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Executive Summary 
 
This deliverable is a report on further refinements of the tools developed according to Task 

3.4 (“Development of novel longitudinal statistical tools“) in Work Package 3 (WP3 Tool 

Development). This deliverable is an update of deliverable D3.6. 

 

We have continued and extended our work on statistical tools to exploit fully the potential of 

the combined and harmonized large cohort studies of Lifebrain. As stated in the project 

proposal, our plan for Task 3.4 was to “address statistical challenges in three steps: (1) 

comparative analysis of data sets and research designs; (2) development and application of 

statistical tools; (3) tool refinement and model selection” (Lifebrain proposal, p. 21), in close 

interaction with the goals and tasks as reported in WP4 (Demonstration). In the context of the 

first goal of addressing comparative analyses across the Lifebrain cohorts (1), we finalized and 

published our meta-analysis on SES, brain structure, and cognition across all Lifebrain cohorts. 

We also developed and published new meta-analysis software for generalized linear mixed 

models, which are useful to model non-linear trajectories based on longitudinal data over the 

lifespan. We continued our work on precision, reliability, and power in longitudinal structural 

equation models (SEM), and published new tools for assessing statistical power in longitudinal 

SEM and for longitudinal studies with planned missing data. With respect to the second goal 

of this deliverable (2), we published our previously described practical guide for variable 

selection and regularization in SEM, a tutorial for joint longitudinal and survival models, and 

we were involved in numerous applications of the new tools. Finally, with respect to step (3), 

we advanced our understanding of methods to reduce the dimensionality of the complex 

multi-modal cross-sectional and longitudinal data in Lifebrain by statistical modelling tools 

(SEM/ confirmatory factor analysis, clustering methods, age-prediction models) and offer 

guidance regarding selecting appropriate models of change. We refined the tools and adapted 

them for the purposes of Lifebrain and similar endeavours beyond.  
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1. Introduction 
 

1.1. Background 
 

The Lifebrain consortium brings together major European neuroimaging studies 

encompassing a large range of measures from different modalities while spanning different 

age ranges and follow-up times, covering the entire human life span. The researchers of the 

consortium have defined a wide range of substantive research questions in WP4. The 

methodological challenges with answering these questions based on the available complex 

data are the subject of WP3. Within WP3, basic issues such as optimal data management and 

streamlined pre-processing pipelines are tackled as well as the selection, development, and 

evaluation of appropriate statistical questions and tools. In our initial proposal for Lifebrain, 

we had suggested three lines of research concerning statistical modelling, Task 3.4:  

(I) Theoretical frameworks and practical tools for comparative analysis of data sets and 

research designs with respect to effect size and power;  

(II) statistical modelling tools to account for the complex nature of lifespan development, 

including multivariate and dynamic longitudinal structural equation models (SEM), data-

driven approaches related to classification and regression trees (CART), and flexible 

modelling using generalized additive mixed modelling (GAMM); 

(III) tool refinement and optimizing of model selection to tackle the important problem of 

identifying and selecting those models that best summarize data across sites.  

 

In deliverable D3.6 we described our work along the first two lines of research (I & II).  

In this deliverable (D3.7), we will update on the status of lines I & II and report on progress on 

research line III.  

 

1.2. Objectives 

Our objectives (Task 3.4) were to advance the statistical methods for optimal exploitation of 

the combined large cohorts in Lifebrain. Challenges included differences in the level of 

measurement and study design. At the level of measurement, cohorts often used different 

measures as indicators of the constructs of interest that were in turn common between 

cohorts. At the level of study design, we faced a variable mix of cross-sectional and 

longitudinal data in various age ranges, differences in sample sizes, measurement precision, 

measurement reliability, and statistical power to detect effects. Thus, we needed to model 

these common constructs as precisely as possible in each cohort while allowing for differences 

in measurement precision, reliability, and statistical power.  
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We had the goal to “provide a pool of existing and novel longitudinal methods that are 

specifically suitable to address the challenges of large-scale multi-site longitudinal data and 

allow testing for various risk and protective factors explaining individual differences in brain 

and mental health changes over the lifespan” (Deliverable D3.6). Ultimately, we aimed at 

identifying “models that optimally represent the consolidated findings of the consortium, and 

hence contribute to theory development and generalizability” (Consortium Proposal, Task 3.4, 

Page 44). 

 

1.3. Collaboration among partners 

This task has been led by the MPIB-team in close collaboration with members from UNIGE, 

UiO, and UCAM. Concerning the role of members involved in statistical modelling, we would 

like to stress that, since the beginning of Lifebrain, we did not see groups and projects on 

statistical modelling and tool development as operating in isolation and distant from 

“substantive” projects, nor as a service unit for statistical counselling. Rather, discussions 

about (statistical) methods have always been a natural part of all discussions about theory and 

data, and many more persons engaged in discussions on statistical methods than the 

contributors of this deliverable. Likewise, the contributors of this deliverable were involved in 

many of the projects on substantive questions. This is symptomatic of the close entanglement 

and mutual inspiration of statistical methods development and theoretical and empirical 

work. This was true for the personal meetings as well as in the virtual meetings during the 

ongoing Covid-19 pandemic. We aim to make our work in this task sustainable for use for in 

the Lifebrain community and beyond by publishing practical, open-source tools, practical 

guidelines, and tutorials, including simulations and use-cases, and related theoretical 

considerations. The remainder of this document provides details on our contributions. 
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2. Results 
 

2.1. Research Line I: Theoretical frameworks and tools for comparative 
analysis of data sets and designs 

2.1.1 Meta-analyses in Lifebrain  

A meta-analysis combines and synthesizes results from different studies, with the potential to 

increase robustness, statistical power, and to quantify potential differences between the 

studies. Estimated effects from the different primary studies are standardized so that their 

scales are comparable, and they can be derived by different indicators in studies of diverging 

design (Hedges & Olkin, 2014). A mega-analysis, in contrast, combines the studies not at the 

level of effects sizes, but at the level of the raw data. In Lifebrain, a meta-analytic approach 

becomes necessary whenever a mega-analytic approach is not feasible, for instance, if 

constructs of interest were measured with heterogenous indicators across sites that did not 

permit harmonization, or if data protection policies do not allow us to share raw data. 

However, in many cases in which we cannot share the raw data, the collaboration in the 

consortium still allows us to streamline or harmonize many of the analytical steps leading to 

the effect size measures. By this, we can minimize non-interesting sources of variation 

between studies or cohorts much more than a conventional meta-analysis possibly can, when 

combining effects from different published studies.  

Meta-analysis with parametric models, SEM 

One of the primary research questions in Lifebrain was to investigate links between socio-

economic status, brain structure, and general cognitive ability, which is now published in 

Cerebral Cortex (Walhovd et al., 2021). Socio-economic status was indicated by income and 

education, brain structure by volume, area and thickness of the cerebral cortex, and general 

cognitive ability was indicated by performance on a range of different tests of fluid 

intelligence. We had initially planned to take a SEM-approach (see D3.6) but observed that 

fitting a consistent model across all cohorts produced convergence issues, so that we had to 

resort to a principal component analysis (PCA) as a more robust, yet similar, approach. As we 

were primarily interested in general cognitive ability but faced a situation in which this was 

measured by widely different tasks in the different studies, we extracted the first principal 

component across cognitive tasks that likely picked up individual differences in general 

cognitive ability. In our meta-analysis on SES, brain structure, and cognitive ability, we 

observed remarkable heterogeneity across European cohorts and between European and US 

cohorts in the degrees to which brain structure and cognitive ability were linked to SES 

(Walhovd et al., 2021).  
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Meta-analysis with nonparametric models, GA(M)M 

Current meta-analytic tools apply meta-analysis to results from parametric statistical models 

that reduce sample data to a finite set of parameters. Interpretation assumes that this set of 

parameters captures all information we need to draw inferences for the underlying population 

and to predict future observations. Non-parametric models do not assume a finite set of 

parameters; instead, the number of parameters can change when the models are applied to 

new or more data. They are often regarded as more robust and flexible to account for non-

linearities in the data. For the Lifebrain consortium, questions around lifespan development 

are of core interest. Adequate models of age differences and changes over the lifespan are 

necessary for more descriptive purposes such as characterization of typical trajectories but 

are also prerequisite to investigating questions such as whether between-person differences 

in brain changes are linked to differences in other variables or to changes in these variables 

over time. In many cases, lifespan trajectories may be best described by a non-parametric 

model.  

 

To illustrate, we fitted (parametric) linear mixed models with quadratic and cubic polynomials 

for the age term to hippocampal volume data from the LCBC cohort (4364 observations of 

2023 participants, age 4–93 years, 1–8 measurements per participant). As illustrated by Fig. 

1, the quadratic fit underestimates the steep increase during adolescence and estimates the 

hippocampal volume to increase too long into adulthood. The cubic fit captures the volume 

growth during adolescence better than the quadratic fit but fails to capture the decline that 

occurs after the age of around 70. For a discussion on polynomials in growth modelling, see 

also Research Line III. The generalized additive mixed model (GAMM) fit, on the other hand, 

is flexible enough to capture both the steep increase during adolescence, a period of 

moderate decline during adulthood, and a steeper decline at old age. GAMMs are extensions 

of generalized additive models (GAMs; (Hastie & Tibshirani, 1987)) including random effects; 

thus, applicable to longitudinal or other forms of clustered data. 

 

In our recently published paper “Meta-analysis of generalized additive models in 

neuroimaging studies” (Sørensen et al., 2021), we describe a method of meta-analysing 

effects from GAMs or GAMMs, which we developed and implemented in an R package named 

metagam (https://cran.r-project.org/web/packages/metagam/index.html). The method 

requires a model that relates an outcome of interest to a set of explanatory variables. This 

model is fitted to data from each cohort. Model estimates are then shared across cohorts such 

that the expected response and their standard errors at new values of the explanatory 

variables can be computed.  
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Figure 1. Example of modelling lifespan trajectories in hippocampal volume with longitudinal 
data using linear mixed models with quadratic and cubic terms for age, as well as a GAMM. 
The black dots show individual observations, and the black lines connect subsequent 
observations from the same individual. The GAMM was fitted with 20 cubic regression splines 
and a random intercept term for each individual, and the optimal smoothing parameter 
estimated with restricted maximum likelihood. Reproduced from Sørensen et al., 2021 (CC BY 
4.0). 

In simulations of some common scenarios of lifespan data and lifespan research questions, 

we showed that our proposed methods perform well. We demonstrated an application of 

metagam in a real data analysis on hippocampal volume and self-reported sleep quality data 

from the Lifebrain consortium. Because we had the full data from the consortium at one place, 

we were able to compare the results from metagam to those from the ideal case, a mega-

analysis on all data combined. The results were very similar. For example, the estimated 

effects of age on hippocampal volume did not differ much between the two approaches. The 

meta-analytically fitted curve lies somewhat above the mega-analytically fitted curve below 

age 60 years and has somewhat narrower confidence bands at low ages and wider confidence 

bands at high ages (Figure 2). A possible reason for the narrow confidence bands of the meta-

analytic estimate in the age range 30 to 55 years is that two cohorts dominate this age range 

as data sources (LCBC and Cam-CAN) and that these two have very similar functional forms.  
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Figure 2. Top panel: Meta-analytic fits obtained by metagam, compared to the 
corresponding fit obtained applying GAMM to full data (Mega-analysis). Effect of age on 
hippocampal volume, including the overall intercept. Bottom panel: Age trajectories of 
hippocampal volume for each cohort. Shaded areas are 95 % confidence intervals. 
Reproduced from Sørensen et al., 2021 (CC BY 4.0). 

We introduced two novel plots for inspecting meta-analytic GAMM results (Figure 3). 

Dominance plots show which age ranges are potentially dominated by individual studies (e.g., 

if a given study contributes a large fraction of the available data in a given age range). 

Heterogeneity plots illustrate the heterogeneity across sites for different age ranges. Taken 

together, these plots help researchers to identify interesting and robust patterns in their data. 
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Figure 3. Dominance and heterogeneity plots. Left panel: the relative contribution from each 
study to the meta-analytic fit over age. Right panel: Cochran’s Q statistic for heterogeneity 
over age. Shaded areas represent 95 % confidence intervals. Reproduced from Sørensen et 
al., 2021 (CC BY 4.0). 
  
We expect that our method of meta-analysing GAMMs has great potential to be applied in 

more projects within Lifebrain, but also other multi-cohort and consortium studies using 

neuroimaging data. The method we propose is particularly useful when the studies contribute 

data in different age ranges, or patient distributions across a clinical variable of interest, 

because we offer an alternative to the straightforward method of enforcing the same knot 

placements, which might lead to nonidentified models. Instead, we propose a point-wise 

meta-analysis, which alleviates these issues and works well in our simulated data and case 

study on hippocampal volume and sleep quality within Lifebrain. In addition, we expect our 

method to be especially useful in neuroimaging genetics research because it can handle 

situations where classic approaches are pushed to their limits, e.g., when genetic effects are 

studied in interaction with other variables, such as age. In sum, we propose metagam will be 

especially beneficial in lifespan neuroscience and imaging genetics (Sørensen et al., 2021).  

 

2.1.2 Structural equation modelling, power, effect size, and reliability 

A central methodological aspect of all meta- or mega-analyses is the question of how precise 

our measurements are. Only when we consider the precision with which each study measures 

a construct of interest or a relationship between two constructs of interest, can we draw 

meaningful conclusions about the presence and magnitude of effects. We reported on some 

of our contributions in this regard in D3.6.  
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We had theoretically laid out the relationships among the concepts of precision, power, and 

reliability of a (longitudinal) study design and concluded that “effective error, reliability, and 

statistical power are different measures that each quantify a study’s ability to detect change 

under different restrictive assumptions (Brandmaier, von Oertzen, Ghisletta, Lindenberger, & 

Hertzog, 2018).” Based on these theoretical developments, we implemented a tool for 

evaluating statistical power in latent variable models with focus on longitudinal designs, the R 

package semper (Brandmaier, 2018).  

As also reported in D3.6, we have developed a formal general framework for assessing 

reliability in neuroimaging studies with repeated measurements named intra-class effect 

decomposition (ICED). The paper was then submitted and published shortly afterwards 

(Brandmaier et al., 2018). 

 

Building on our previous work on the efficiency of longitudinal study designs to detect change, 

we assessed efficiency of longitudinal study designs with planned missingness (PM). We 

expect this topic to be of great interest for researchers planning new longitudinal 

neuroimaging studies, but also for researchers working with existing data sets with complex 

missing data patterns. In general, PM designs are a way of optimizing the efficiency of a 

longitudinal study by deliberately omitting some of the measurements for some of the 

participants. Collecting longitudinal data is much more time-consuming and cost-intensive 

than collecting cross-sectional data, especially in cases of costly data collection as is often the 

case in neuroscience. However, when investigating changes over the lifespan, longitudinal 

data are crucial (Lindenberger, von Oertzen, Ghisletta, & Hertzog, 2011; Raz & Lindenberger, 

2011). We had previously introduced the concept of effective error (D3.6) and how we used 

it to find optimal longitudinal study designs for complete data; here, we extend the approach 

to PM designs.  

 

The Lifebrain consortium set out to investigate statistical power and optimal research design 

for future longitudinal studies of similar kind. We have developed an analytical approach to 

estimate the statistical precision (that is, precision of measurement, reliability, and statistical 

power) of longitudinal study designs with planned missing data (Brandmaier, Ghisletta, & von 

Oertzen, 2020). Longitudinal planned missing data designs prescribe patterns of measurement 

occasions that vary across participants; that is, not all participants are measured at every time 

point. Our formal solution allows gauging the efficiency of different planned missing data 

designs against each other and against a complete data design in terms of both statistical 

precision and cost efficiency/feasibility.  
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Theoretical contributions with potential benefit for the Lifebrain consortium and involving 

single members include, for example, Anvari, Kievit, and colleagues’ (2021) work on the 

practical relevance of effect sizes in psychological research, which has the potential to help 

researchers to make their claims about generalizability of findings more transparent, and to 

assess whether psychological findings can be applied in daily life. This work is currently at the 

preprint stage (Anvari et al., 2021).  

Another theoretical contribution, published in Perspectives on Psychological Science 

(Borsboom, van der Maas, Dalege, Kievit, & Haig, 2021), offers psychological researchers 

practical guidance in theory formation.  

2.2. Research Line II: Statistical modelling tools using longitudinal SEM, CART, and joint 
longitudinal and survival models 

 

2.2.1 The Variable Selection Problem: Novel approaches using SEM Trees, SEM 
Forests, and Regularized SEM 
 
We reported in D3.6 our contributions to the development of new approaches combining 

theory-based SEM with data-driven techniques; in this case, classification and regression trees 

(CART), random forests, and regularized regression. Model-based trees, such as SEM Trees 

(Brandmaier, von Oertzen, McArdle, and Lindenberger, 2013), recursively split observed data 

into homogeneous groups sharing similar parameters of a model. These model-based trees 

can be thought of as adaptive multiple group models, in which the group structure and its 

predictors are learnt from the data. This allows us to explore those variables (and interactions 

between variables) that best predict differences in multivariate outcomes. Particularly, this 

includes the possibility to explore predictors of individual differences in models of (correlated) 

change over time.  

 

SEM Forests (Brandmaier, Prindle, McArdle, & Lindenberger, 2016) are a recent extension of 

SEM Trees. They are large ensembles of SEM Trees, comprising hundreds to thousands of 

individual trees, each based on a random sample of the original data. By aggregating the 

predictive information in a forest, one obtains a measure of variable importance that is more 

robust than corresponding measures from single trees. Another way of identifying the most 

important predictor variables from a larger set is through regularization. The cross-site 

methodological collaboration on the topic of regularization in Lifebrain joined forces with Ross 

Jacobucci (University of Notre Dame), which led to a methodological contribution that 

included the well-established technique of regularized regression with SEM (Jacobucci, 

Grimm, & McArdle, 2016). Regularization is a regression model with many predictors that 

penalizes small regression coefficients and thus retains only the most important predictors. In 

regularized SEM, a structural equation model can be reduced to the most important paths in 

a data-driven manner.  
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Our work on regularized SEM has resulted in a publication of a tutorial, or practical guide, with 

one use-case in which we applied regularized SEM to data from the Cam-CAN cohort to predict 

visual short-term memory performance with microstructural properties in a number of white 

matter tracts (Jacobucci, Brandmaier, & Kievit, 2019). We reported on this in D3.6, at the time 

it was still a preprint.  

 

These new tools that combine data-driven ways of variable selection with theory-based SEM 

have since been applied in several published papers within Lifebrain. To start with applications 

of SEM trees, our first project with SEM trees within Lifebrain (D3.6) investigated age 

differentiation. Specifically, we investigated the question of whether intercorrelated neural 

and cognitive variables will be less correlated with advancing age. In this study, published in 

the Journal of Neuroscience in 2018 (de Mooij, Henson, Waldorp, & Kievit, 2018), the SEM tree 

approach helped to explore the age range in search for meaningful differences.  

These research activities influenced two further recently published papers (which are not part 

of Lifebrain, but involve a Lifebrain member), where SEM trees were used to explore age 

differences in the associations between white matter microstructure and cognitive abilities 

(working memory and processing speed as predictors of fluid intelligence). Based on data from 

two cohorts of children and adolescents between 6 and 18 years of age, of which one cohort 

is part of Lifebrain (CALM), our SEM tree analyses suggested that many of the associations 

between the microstructure of single white matter tracts and single cognitive abilities were 

weaker during prepuberty and early puberty and stronger before and after puberty, in line 

with the notion of a reorganization of the neurocognitive architecture in these age ranges 

(Fuhrmann, Simpson-Kent, Bathelt, Rogier, & Kievit, 2020; Simpson-Kent et al., 2020).  

Furthermore, we have investigated how regularization can help to select from a large set of 

candidate genes to find a model that best predicts differences in working memory (Karalija et 

al., 2021). This allowed us to identify four genes (DRD2, DAT, COMT, and VMAT2) that jointly 

formed a prediction model that performed well in the BASE-II data, which is part of the 

Lifebrain consortium, whereas we found a simple effect of one of the four genes (DAT) in a 

replication sample (the Cognition, Brain, and Aging study, (Nevalainen et al., 2015)). Using PET 

imaging, we found that this gene also predicted differences in in vivo dopamine, thus showing 

that DA function contributes to differences in working memory performance in old age, 

presumably by regulating dopamine availability. 
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2.2.2 Joint longitudinal-survival models 
 

In this Lifebrain research project, we focussed on combining flexible models that describe 

intraindividual trajectories over time with discrete event data. This statistical approach is 

called a joint longitudinal-survival model, and it allows for studying how parameters that 

describe individuals' trajectories are best modelled jointly with a survival model describing the 

hazard associated with a specific outcome event, e.g., disease onset or death. We have 

reported on the details of the approach in D3.6, and how we solved difficulties of its practical 

implementation, including questions of how to decide for a suitable longitudinal model, how 

to relate the longitudinal model to the survival model, as well as interpretation issues.  

 

We have recently published a tutorial on this method (Cekic, Aichele, Brandmaier, Köhncke, 

& Ghisletta, 2021) that helps researchers understand and use the tool when investigating 

questions about longitudinal, time-varying factors that predict a discrete event to happen, 

such as what changes in brain structure or behaviour that predict institutionalisation, or 

death. We expect this to be useful for the Lifebrain community and researchers interested in 

modelling lifespan and ageing data. 

 

2.3. Research Line III- tool refinement and optimizing of model selection 

In this research line, we worked on the refinement of various tools. We will first report about 

our advances on model selection – which models are best suited to summarize data across 

sites. We have touched upon the differences between mega-analysis and meta-analysis and 

have reported on our work on meta-analytic techniques to model changes using meta-GAM 

in Research Line I. Here, we discuss the broader topic of dimensionality reduction as a way of 

“summarizing data,” and the applicability of a range of approaches of dimensionality 

reduction to cross-sectional and longitudinal data, in meta- and mega-analysis in Lifebrain. 

We will give some examples of how we refined different concrete tools related to these 

questions. Last, we discuss the utility of growth modelling for questions of lifespan 

development.  
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2.3.1 Refinement and model selection: multivariate modelling and dimensionality 

reduction 

Neuroimaging data are often high-dimensional, which means that there are many measured 

variables (typically, thousands to tens of thousands of voxels), which also are correlated with 

each other to different degrees. At the same time, the space of concepts of interest is of much 

lower dimensionality; that is, we are interested in a smaller set of more general characteristics 

(specific regional functional activation patterns or notions of functional and structural 

integrity). In these cases, techniques of dimensionality reduction are required. An advantage 

with having recorded many measures of the same general characteristic instead of only one 

is robustness; individual measures are often biased and noisy. By aggregating across them, we 

expect to reduce the influence of measurement-specific bias and noise, and extract the 

commonality representing the general characteristic of interest. Dimensionality reduction 

techniques can be generally categorized into the broad classes of supervised/ theory-based/ 

confirmatory approaches, or unsupervised/ data-driven/ exploratory approaches. In theory-

based dimensionality reduction, we have an a priori theory that specifies which measures 

relate to which theoretical construct.  

In data-driven dimensionality reduction, we only expect or assume that there is shared 

information across the measures, and we interpret the meaning of the commonness or lower-

dimensional structure after we apply dimensionality reduction. 

 

2.3.2 Theory-based dimensionality reduction  

The theory-based approach has a long tradition in psychometrics for measuring not directly 

observable, latent, constructs such as “extraversion” or “intelligence.” In this tradition, the 

flexible framework of structural equation models is often used to build measurement models 

(which are confirmatory factor models) to capture a latent construct and then relate it to other 

constructs of interest. A measurement model is also a theory-based way to reduce the 

dimensionality of a set of indicators of a theoretical construct. The theoretical construct is 

represented by a latent (unobserved) variable, measured by the indicator variables, or 

manifest (observed) variables. The latent variable captures the shared variance of the 

manifest variables, apart and independent from the specific variance each manifest variable 

has. Thus, the dimensionality of the data is reduced from the number of observed variables 

to the number of theoretical constructs that we are interested in. In such a theory-based 

application (Köhncke et al., 2021), we built a model of grey matter integrity based on 

measures from three different structural MR imaging modalities; that is, grey matter intensity 

from T1-weighted MRI, mean diffusivity (MD) from diffusion-weighted MRI (DWI), and 

magnetization-transfer ratio (MTR) from magnetization transfer imaging.  
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These measures are brought about by very different physical processes, and capture different 

tissue properties, but have in common that they are all interpreted as indicators of the 

integrity of the tissue. Applying SEM to data from the BASE-II study, we observed that there is 

enough common variance across these three modalities for each of several brain regions of 

interest (ROI) to be captured in a modality-general factor of (structural) integrity. In other 

words, the variance-covariance structure across these three imaging modalities in several 

episodic memory-related ROIs is well represented by ROI-wise integrity factors. We interpret 

these factors as a general but regional characteristic that can be interpreted as integrity. The 

fact that we can reduce the set of modality-specific indicators to a modality-general factor 

shows that individuals who are better off in one of the indicators tend to be better off in the 

others as well. We can only speculate about the biological processes that may be responsible 

for this pattern to emerge. We are currently working on longitudinal extensions of this model. 

In doing so, we are also thinking about ways to generalize the applicability of such a 

longitudinal model to be able to include data from other Lifebrain cohorts. 

 

In a different project, in collaboration of several Lifebrain members from MPIB and UmU with 

Elliot Tucker-Drob from the University of Texas, Austin, we investigated the dimensionality of 

cognitive changes in late adulthood using longitudinal data from a Lifebrain cohort (Betula, 

UmU) and a US-cohort, VCAP (Salthouse, 2017). Theories of adult cognitive development 

classically distinguish between fluid abilities, which require effortful processing at the time of 

assessment, and crystallized abilities, which require the retrieval and application of previously 

acquired knowledge. On average, fluid abilities decline throughout adulthood, whereas 

crystallized abilities show stability, or even gains until later adulthood. These diverging age 

trends, along with marked individual differences in rates of change, have led to the 

proposition that individuals might compensate for fluid declines with crystallized gains. Here, 

we show that rates of change are strongly correlated across fluid and crystallized abilities. 

Hence, individuals showing greater losses in fluid abilities tend to show smaller gains, or even 

losses, in crystallized abilities). This observed commonality between fluid and crystallized 

changes places constraints on theories about compensation and directs attention towards 

domain-general drivers of adult cognitive decline and maintenance. The manuscript is 

submitted to Science Advances and is currently under (minor) revision.  

 

Theory-implied dimensionality is also a central issue of another recently added Lifebrain 

research project. In this project, we plan to examine comprehensively the dimensionality 

underlying individual differences in longitudinal changes in cognitive performance during 

childhood.  
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Furthermore, we investigate the question of whether the theory of differentiation of cognitive 

abilities during childhood - a general factor of intelligence becoming less influential, and 

cognitive abilities becoming more differentiated during childhood and early adolescence - is 

supported by longitudinal measurements of cognitive abilities from Lifebrain cohorts. We will 

apply SEM to simultaneously estimate differences between dimensionality of cognitive ability 

in early and late childhood both with regard to levels and changes.  

 

2.3.3 Data-driven dimensionality reduct ion  

In many neuroimaging studies, exploratory, data-driven techniques are used to reduce 

dimensionality. Techniques such as Exploratory Factor Analysis (EFA) reduce measurements 

from a large number of brain regions to a tractable number of factors without a priori 

assumptions on the number of factors or the mapping of brain regions to factors. However, 

dimensionality reduction often ignores relevant a priori knowledge about the structure of the 

data. For example, it is well established that the brain is highly symmetric. In a recent paper 

we (a) show the adverse consequences of ignoring a priori structure in factor analysis; (b) 

propose a technique to accommodate structure in EFA using structured residuals (EFAST), and 

(c) apply this technique to three large and varied brain imaging network datasets, 

demonstrating the superior fit and interpretability of our approach (Van Kesteren & Kievit, 

2021). We provide an R software package (https://rdrr.io/github/vankesteren/efast/) to 

enable researchers to apply EFAST to other suitable datasets. 

 

As an example of tool refinement, we advanced our understanding of yet another type of 

data-driven dimensionality-reducing statistical model in neuroscience, brain age prediction 

models (Ann-Marie G De Lange et al., 2020; Vidal-Pineiro et al., 2021). In these models, 

machine learning algorithms are trained on a wide range of magnetic resonance imaging (MRI) 

scans to build a normative trajectory of age-related brain differences and project a broad 

variety of correlated brain characteristics onto a single quantity per individual. Prediction 

models can then be applied to new data, providing an estimate of brain-predicted age for each 

individual in the new dataset. The difference between an individual’s brain-predicted and 

chronological age (brain age delta) has become an influential index for brain health and has 

been associated with clinical risk factors as well as neurological and neuropsychiatric 

conditions. It is often interpreted as a proxy for deviations from expected age, assumed 

partially to reflect the rate of brain aging. Vidal-Piñeiro et al. (2021) explicitly tested this 

assumption in UK Biobank data and a combined dataset from five Lifebrain cohorts (mega-

analysis). Counter to most common interpretations of this index, we found no association 

between cross-sectional brain age and steeper brain decline. Rather, brain age in adulthood 

was associated with early-life influences indexed by birth weight and polygenic scores.  

  

https://rdrr.io/github/vankesteren/efast/
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The results call for much more nuanced interpretations of cross-sectional indices of the aging 

brain such as brain age (delta). Whereas this is important as a substantive result, we would 

also argue that our focus on comparing cross-sectional and longitudinal evidence from brain-

age prediction models is a crucial step to further refinement of this kind of dimensionality 

reduction methods in neuroimaging. It will be of importance and interest for the lifespan 

neuroimaging community, because brain age prediction gains popularity in neuroimaging as 

more big data are available, and such prediction models offer a way to explore them with 

respect to an outcome of interest. This work has just been published in eLife (Vidal-Pineiro et 

al., 2021).  

 

A recently established research project within Lifebrain aims to model multimodal longitudinal 

imaging as a set of different patterns of brain aging (independent components of longitudinal 

brain change). We aim to pair these different patterns of brain aging with cognitive data 

(memory tests) and genetic data by computing pathway-specific polygenic risk scores (PGS) 

indexing genetic liability to neurodegeneration. 

Whereas a variety of machine-learning algorithms can provide accurate predictions of age 

based on brain characteristics, there is significant variation in model accuracy reported across 

studies, and researchers need valid metrics to assess the performance of their models at hand. 

Thus, we investigated the comparability of common performance metrics for brain-age 

prediction models (Ann-Marie G. de Lange et al., 2021).  

We predicted age based on neuroimaging data in Cam-CAN and UK Biobank, and assessed the 

effects of age range, sample size, and age-bias correction on the model performance metrics 

r, R2, Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE). We observed that 

these metrics vary considerably depending on the cohort age range. Across subsets with 

different age ranges, performance metrics improve with increasing sample size. Performance 

metrics further vary depending on prediction variance as well as mean age difference between 

training and test sets, and age-bias corrected metrics indicate high accuracy - also for models 

showing poor initial performance. In conclusion, performance metrics used for evaluating age 

prediction models depend on cohort and study-specific data characteristics and cannot be 

directly compared across different studies.  

 

A different exploratory approach to data is to identify modes of variation in the high-

dimensional data (Smith et al., 2020), not related to any specific outcome (such as age in brain 

age prediction). We plan to adapt this approach to Lifebrain (mega-analysis) with the major 

advantage of being able to compare cross-sectionally derived modes of variation to such 

derived from longitudinal data.  
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2.3.4 Model selection: Theoretical considerations on the use of growth 

modelling, longitudinal clustering, and Granger-causality  

Growth models (GM), such as mixed-effects models and latent growth curve models, have 

become popular methodological tools in lifespan research. One of the major advantages of 

GM is their flexibility in studying individual differences in change. We scrutinized the change 

functions of GM used in five years of publications on cognitive aging (Ghisletta et al., 2020). A 

large majority of studies applied polynomial decomposition, and only a small fraction 

considered exponential or yet another non-linear function of change. However, it is 

conceptually and empirically plausible to assume exponential decline from adulthood to old 

age. This calls for exploring what conclusions about individual differences in change are likely 

to be drawn if one applies linear or quadratic GMs to data simulated under a model of 

exponential cognitive decline. Hence, we set up a simulation that manipulated the rate of 

exponential decline, measurement reliability, number of occasions, interval width, and sample 

size. True rate of decline and interval width influenced results strongly, number of occasions 

and measurement reliability exerted a moderate effect, and the effects of sample size 

appeared relatively minor. We encourage researchers to also consider plausible nonlinear 

change functions when studying behavioural development over the lifespan (Ghisletta et al., 

2020).  

 

As another contribution to model selection, we have compared clustering methods for 

longitudinal data (Taushanov & Ghisletta, 2020). Specifically, we compare a Hidden Mixture 

Transition Distribution (HMTD) and its clustering performance to the popular Growth Mixture 

Model (GMM), as well as to the recently introduced GMM based on individual case residuals 

(ICR-GMM). In conclusion, we see slight advantages of GMM in cases when users have strong 

theoretical reasons in favour of an explicit mathematical change function to describe the 

individual sequences. The HMTD approach comes with parametric parsimony (mean, 

variance, and auto-regressive parameter), is quite easily estimated and adapts well to 

different types of trajectories even in small samples (Taushanov & Ghisletta 2020). 

In neuroscience, there is an increased interest in finding causal links between signals recorded 

at different brain locations during an experiment. We proposed a systematic methodological 

review and an objective criticism of existing methods enabling the derivation of time, 

frequency, and time‐varying Granger‐causality statistics in neuroscience. In this article, we 

first present a general framework of Granger‐causality statistics in the time domain. Then, the 

spectral and the time‐varying extensions are discussed, with their estimation and 

distributional properties. Links to partial and conditional Granger causality, dynamic causal 

modelling, directed transfer function, directed coherence, partial directed coherence, and 

their variant, are also mentioned (Cekic, Grandjean, & Renaud, 2018).  
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We expect this contribution to be useful for any neuroscientist interested in the causal 

interpretation of time-series data, where one time series may precede and potentially 

influence another time series. 

3. Conclusion 
 

We have refined and extended the set of tools needed to answer the substantive questions 

as proposed in work package 4. We have engaged in the development and comparison of 

statistical models that allow for aggregating data across sites and answering more general, 

substantive questions that reach far beyond the Lifebrain consortium and hopefully will serve 

to establish best practices in other fields as well. As a particular challenge, we actively 

advanced our understanding of longitudinal methods as compared to the more established 

cross-sectional approaches. Methodological discussions have always been intertwined with 

discussions of substantive questions and theoretical perspectives. We are gratified to report 

that this led to several newly proposed research projects within Lifebrain beyond the initial 

agenda of the original grant proposal. To the greatest extent possible we have made our tools 

and innovations freely available to the public through preprints, Open Access publications, 

and Open Source software packages. For the remaining lifetime of the consortium, and 

beyond, we will continue to dedicate our time and effort to meet the needs of the continuing 

projects requiring data-analysis.   
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